eft-fold enumerators

Johan Tibell
Google

Sep 2008

Hyena - A web application server

e Proper resource management is crucial
o Free allocated resources (e.g. file descriptors) in a timely
manner
o Constant memory usage

e Performance matters
o Low latency
o High throughput

e Safety and ease of use
o We use Haskell!

A web application interface

-— A web application
type Application = Request -> I0 Response

data Method = Get | Post | Put | Delete |

—— An HTTP request
data Request = Request

{ requestMethod :: Method

, requestUri :: ByteString

, headers :: [(ByteString, ByteString)]
input :: ?2?2? —-- Request body

type StatusCode = Int

—— An HTTP Response
type Response = (StatusCode, ?77) —-—- Response body

Constraints

e In rare cases like a file upload the request body might be
large

e Somewhat more frequently the response body might be
larger e.g. when streaming a video from YouTube

e We want to use a constant amount of memory to serve the
request

e \We need to free resources allocated to serve the request as
soon as the response has been sent

Lazy I/O

e Create a lazy byte string by reading lazily from the socket

import Data.ByteString.Lazy as L
data Request = Request

{ ...
, 1lnput :: L.ByteString
}

What's wrong with lazy |/O?

e To generate a response to send back to the client we might
need to:
o Open files
o Make HT TP requests to back-end servers
o eftc.
e Lots of side effects for something that claims to be pure in
it's type!
e Resources aren't freed in a timely manner in presence of
errors
e |/O exceptions can occur in pure code

ldea: Use inversion of control

data Request = Request
{

, 1lnput :: EnumeratorM IO

}

e The resource (request body) is iterated over using a left
fold.

type EnumeratorM m = forall a. IterateeM m -> a -> m a

e The caller provides a function to call whenever data is
available

type Iteratee a m = a —-> ByteString -> m (Either a a)

A file enumerator without error handling

fileEnum :: FilePath -> EnumeratorM IO
fileEnum fname 1teratee seed = do
h <- openBinaryFile fname ReadMode
let loop £ z = do
block <- hGetNonBlocking h 1024
1f null block then return z
else do
z' <—- £ z block
case z' of
Left z''" -> return z'"'
Right z'' -> loop £ z''
seed' <- loop i1teratee seed

hClose h >> return seed’

Pros

e Allocated resources are always be freed at the earliest
possible time by the enumerator function

e We can still interleave e.g. reading from disc with sending
data over the network and use O(1) memory

sendChunk :: Socket -> IterateeM () IO
sendChunk sock bs = send sock bs >> return (Right ())

sendRespone :: EnumeratorM IO -> Socket -> I0 ()
sendRespone enum sock = enum (sendChunk sock) ()

e sendChunk is an unfold

Pros cont.

e We can use kqueue, epoll, and other OS event systems to
drive many enumerators in parallel
o We store the current iteration state, the seed, together
with the file descriptors and whenever an event
notification is received we compute a new seed

Using enumerators

e |'ve implemented a web server, Hyena, using enumerators
for all socket and file I/O
o | use a resumable parser for parsing HT TP headers, the
parser state is passed around as a seed by the
enumerator
o Composing enumerators to provide transparent HTTP
chunked encoding is not too difficult

