
Left-fold enumerators

Johan Tibell
Google

Sep 2008

Hyena - A web application server

Proper resource management is crucial
Free allocated resources (e.g. file descriptors) in a timely
manner
Constant memory usage

Performance matters

Low latency
High throughput

Safety and ease of use
We use Haskell!

A web application interface

-- A web application
type Application = Request -> IO Response

data Method = Get | Post | Put | Delete | ...

-- An HTTP request
data Request = Request
 { requestMethod :: Method
 , requestUri :: ByteString
 , headers :: [(ByteString, ByteString)]
 , input :: ??? -- Request body
 }

type StatusCode = Int

-- An HTTP Response
type Response = (StatusCode, ???) -- Response body

Constraints

In rare cases like a file upload the request body might be
large
Somewhat more frequently the response body might be
larger e.g. when streaming a video from YouTube
We want to use a constant amount of memory to serve the
request
We need to free resources allocated to serve the request as
soon as the response has been sent

Lazy I/O

Create a lazy byte string by reading lazily from the socket

import Data.ByteString.Lazy as L
data Request = Request
 { ...
 , input :: L.ByteString
 }

What's wrong with lazy I/O?

To generate a response to send back to the client we might
need to:

Open files
Make HTTP requests to back-end servers
etc.

Lots of side effects for something that claims to be pure in
it's type!
Resources aren't freed in a timely manner in presence of
errors
I/O exceptions can occur in pure code

Idea: Use inversion of control

data Request = Request
 { ...
 , input :: EnumeratorM IO
 }

The resource (request body) is iterated over using a left
fold.

type EnumeratorM m = forall a. IterateeM m -> a -> m a

The caller provides a function to call whenever data is
available

type Iteratee a m = a -> ByteString -> m (Either a a)

A file enumerator without error handling

fileEnum :: FilePath -> EnumeratorM IO
fileEnum fname iteratee seed = do
 h <- openBinaryFile fname ReadMode
 let loop f z = do
 block <- hGetNonBlocking h 1024
 if null block then return z
 else do
 z' <- f z block
 case z' of
 Left z'' -> return z''
 Right z'' -> loop f z''
 seed' <- loop iteratee seed
 hClose h >> return seed'

Pros

Allocated resources are always be freed at the earliest
possible time by the enumerator function
We can still interleave e.g. reading from disc with sending
data over the network and use O(1) memory

sendChunk :: Socket -> IterateeM () IO
sendChunk sock _ bs = send sock bs >> return (Right ())

sendRespone :: EnumeratorM IO -> Socket -> IO ()
sendRespone enum sock = enum (sendChunk sock) ()

sendChunk is an unfold

Pros cont.

We can use kqueue, epoll, and other OS event systems to
drive many enumerators in parallel

We store the current iteration state, the seed, together
with the file descriptors and whenever an event
notification is received we compute a new seed

Using enumerators

I've implemented a web server, Hyena, using enumerators
for all socket and file I/O

I use a resumable parser for parsing HTTP headers, the
parser state is passed around as a seed by the
enumerator
Composing enumerators to provide transparent HTTP
chunked encoding is not too difficult

