
A Scalable I/O Manager for GHC

Johan Tibell
29 January 2010

http://github.com/tibbe/event

Server applications

Performance matters
Servers cost (a lot of) money
We want as high throughput as possible

Scalability: Performance shouldn't degrade (too much)
when the number of clients increase

Observation: In most (HTTP) servers, the majority
of clients are idle at any given point in time

Why Haskell?

Simple programming model:
Light-weight threads (forkIO)
Blocking system calls

server = forever $ do
 sock <- accept serverSock
 forkIO $ talk sock >> sClose sock

talk sock = do
 req <- recv sock
 send sock (f req)

Why Haskell?

Performance:
Lots of concurrency
Statically compiled; should perform favorably in
comparison with e.g. Python and Ruby
Alternative to C++ or Java when performance matters

Correctness:
Pure functions
Strong static typing

What we are missing

Support for a large number of concurrent connections

Support for a large number of active timeouts
Typically one per connection

Implementing light-weight threads

Schedule many light-weight threads across a set of OS
threads.

To avoid blocking the OS threads, use the select system
call to monitor multiple file descriptors using a single OS
thread.

Non-blocking I/O refresher

select: a system call for polling the status of multiple file
descriptors.

A call to select returns when one or more file
descriptors are ready for reading writing, or
a timeout occurs.

Only call a potentially blocking system call (e.g. recv)
when we know it won't block!

Reading

data IOReq = Read Fd (MVar ())
 | Write Fd (MVar ())

read fd = do waitForReadEvent fd
 c_read fd

waitForReadEvent fd = do
 m <- newEmptyMVar
 atomicModifyIORef watechedFds (\xs ->
 (Read fd m : xs, ()))
 takeMVar m

Sleeping/timers

data DelayReq = Delay USecs (MVar ())

threadDelay time = waitForDelayEvent time

waitForDelayEvent usecs = do
 m <- newEmptyMVar
 target <- calculateTarget usecs
 atomicModifyIORef delays (\xs ->
 (Delay target m : xs, ()))
 takeMVar m

I/O manager event loop

eventLoop delays watchedFds = do
 now <- getCurrentTime
 (delays', timeout) <- expire now delays
 readyFds <- select watchedFds timeout
 watchedFds' <- wakeupFds readyFds watchedFds
 eventLoop delays' watchedFds'

expire _ [] = return ([], Never)
expire now ds@(Delay d m : ds')
 | d <= now = putMVar m () >> expire now ds'
 | otherwise = return (ds, Timeout (d - now))

I/O manager event loop cont.

wakeupFds readyFds fds = go fds []
 where
 go [] fds' = return fds'
 go (Read fd m : fds) fds'
 | fd `member` readyFds =
 putMVar m () >> go fds fds'
 | otherwise = go fds (Read fd m : fds')
 go (Write fd m : fds) fds'
 | fd `member` readyFds =
 putMVar m () >> go fds fds'
 | otherwise = go fds (Read fd m : fds')

The problem

select:
~O(watched file descriptors)

Most file descriptors are idle!
Limited number of file descriptors (FD_SETSIZE)

Iterating through all watched file descriptors every
time around the event loop.

Timeouts are kept in a list, sorted by time
Insertion: O(n) as we need to keep the list sorted

A scalable I/O manager

Scalable system calls
epoll, kqueue, and some Windows thing...

Better data structures
Trees and heaps instead of lists

Timeouts

New I/O manager uses a priority search queue
Insertion: O(log n)
Getting all expired timeouts: O(k*(log n - log
k)), where k is the number of expired timeouts

The API for timeouts is quite limited (to say the least!)
One function: threadDelay

Priority search queues allows us to

adjust/cancel pending timeouts

Priority search queue performance

Used Criterion extensively to benchmark and verify
micro optimizations.

Biggest performance gains:
Specialized to a single type of key/priority
Strict sub-trees
Unpacked data types

Used QuickCheck to make sure that the optimizations
didn't break anything.

threadDelay 1ms

Light-weight threads vs event loop

Reading/writing

Scalable system calls
epoll/kqueue: O(active file descriptors)

Unblocking threads that are ready to perform I/O
O(log n) per thread, using an IntMap from file
descriptor to MVar
Total running time for k active file descriptors is O(k
* log n) instead of O(n).

Send 1M 1-byte messages through pipes

Aside: Good tools are important

ThreadScope
Helped us find a pathological case in an interaction
between atomicModifyIORef and GHC's scheduler

Current status

Close to feature complete

Needs more
testing
benchmarking

Final step remaining: Integrate into GHC

Conclusions

Haskell is (soon) ready for the server!

We still need:
High performance HTTP server
High performance HTML combinator library
Composable and secure HTML form generation

Formlets + cross-site scripting protection
Scalable and distributed data store

We could just write binding to an existing one (but
where's the fun in that!)

